

Training in a Virtual Learning Environment: A Process Mining Approach

Annalisa Appice, Pasquale Ardimento, Donato Malerba, Giuseppe Modugno, Diego Marra, Marco Mottola

Presented at the Special Session in Evolving Business Process Management (EvoBPM) @ IEEE EAIS 2020

Scenario

- Workers' training
 - ✓ 360 Video
 - ✓ Virtual Reality
 - ✓ Artificial Intelligence → predicting the achievements of the trained workers

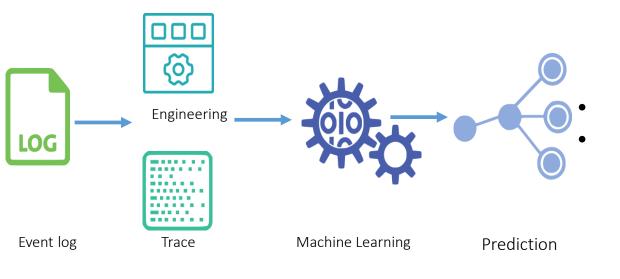
Novelties

- The scenario is different from the one that is commonly investigated in the education studies ...
 - ✓ Students are workers instead of under-graduate or postgraduate students
 - ✓ The learning environment involves Virtual Technologies (360 Video+VR) instead of classrooms, traditional e-learning tools (e.g. MOOCs)
 - ✓ Artificial Intelligence to replace multiple-choice tests to determine the learning outcome achievements

Novelties

 Tracking the worker behaviour in the virtual learning environment and logging the tracked data

 Representing the logged data of the training session of each worker as a trace of a training process and designing a predictive process mining approach



Trace-defined training sessions

Event	Worker	Scene	Time	Completion	Elapsed time	Effort
E1	W1	Scene1	2019-1-10,10:01:32	Completed	17442	18
E2	W1	Scene2	2019-1-10,10:03:02	Completed	27413	27
E3	W1	Scene3	2019-1-10,10:10:02	Completed	122709	48
E4	W1	Scene4	2019-1-10,10:13:22	Completed	100567	21
E5	W1	Scene5	2019-1-10,10:15:01	Uncompleted	458000	45
E6	W1	Scene5	2019-1-10,10:15:10	Uncompleted	3770223	37
E7	W1	Scene5	2019-1-10,10:15:19	Completed	557000	61
	W1			PASSED		
E8	W2	Scene1	2019-1-10,10:30:31	Completed	18244	21

ViTE- Virtual Iraining Exam prediction

Trace-based data engineering Predictive pattern learning

Data engineering

- Multi-perspective data engineering
 - ✓ Scene perspective
 - ✓ Control-flow perspective
 - ✓ Performance perspective

Data engineering – scene

Event	Worker	Scene	Time	Completion	Elapsed time	Effort
E1	W1	Scene1	2019-1-10,10:01:32	Completed	17442	18
E2	W1	Scene2	2019-1-10,10:03:02	.0:03:02 Completed		27
E3	W1	Scene3	2019-1-10,10:10:02	Completed	122709	48
E4	W1	Scene4	2019-1-10,10:13:22	Completed	100567	21
E5	W1	Scene5	2019-1-10,10:15:01	Uncompleted	458000	45
E6	W1	Scene5	2019-1-10,10:15:10	Uncompleted	3770223	37
E7	W1	Scene5	2019-1-10,10:15:19	Completed	557000	61

PASSED

Scene1	Scene2	Scene3	Scene4	Scene5		Scene	counter
1	1	1	1	3	-		
	Scene1C	Scene2C	Scene3C	Scene4C	Scer	ne5C	
	100%	100%	100%	100%	33.	3%	

Completion scene

Data engineering – control flow

Event	Worker	Scene	Time	Completion	Elapsed time	Effort
E1	W1	Scene1	2019-1-10,10:01:32	Completed	17442	18
E2	W1	Scene2	2019-1-10,10:03:02	Completed	27413	27
E3	W1	Scene3	2019-1-10,10:10:02	Completed	122709	48
E4	W1	Scene4	2019-1-10,10:13:22	Completed	100567	21
E5	W1	Scene5	2019-1-10,10:15:01	Uncompleted	458000	45
E6	W1	Scene5	2019-1-10,10:15:10	Uncompleted	3770223	37
E7	W1	Scene5	2019-1-10,10:15:19	Completed	557000	61

PASSED

Control-flow counter

Scene1C→Scene1C	Scene1C→Scene1U	Scene1C→Scene2C	 Scene5U→Scene5U
0	0	1	1

Data engineering – performance

Event	Worker	Scene	Time	Completion	Elapsed time	Effort
E1	W1	Scene1	2019-1-10,10:01:32	2019-1-10,10:01:32 Completed 17442		18
E2	W1	Scene2	2019-1-10,10:03:02	2019-1-10,10:03:02 Completed 27413		27
E3	W1	Scene3	2019-1-10,10:10:02	Completed 122709		48
E4	W1	Scene4	2019-1-10,10:13:22	Completed	100567	21
E5	W1	Scene5	2019-1-10,10:15:01	Uncompleted	458000	45
E6	W1	Scene5	2019-1-10,10:15:10	Uncompleted	3770223	37
E7	W1	Scene5	2019-1-10,10:15:19	Completed	557000	61

PASSED

Trace-level time

count	sum	min	max	median	mean
7	1660153	17442	557000	122709	237164.71

Scene-level time

Scene1Sum	Scene1Min	Scene1Max	 Scene5Mean
17442	17442	17442	1595074.3

Data engineering – performance

Event	Worker	Scene	Time	Completion	Elapsed time	Effort
E1	W1	Scene1	2019-1-10,10:01:32	Completed	17442	18
E2	W1	Scene2	2019-1-10,10:03:02	Completed	27413	27
E3	W1	Scene3	2019-1-10,10:10:02	Completed	122709	48
E4	W1	Scene4	2019-1-10,10:13:22	Completed	100567	21
E5	W1	Scene5	2019-1-10,10:15:01	Uncompleted	458000	45
E6	W1	Scene5	2019-1-10,10:15:10	Uncompleted	3770223	37
E7	W1	Scene5	2019-1-10,10:15:19	Completed	557000	61

PASSED

Trace-level effort

sum	min	max	median	mean	
257	18	61	37	36.71	

Scene-level effort

Scene1Sum	Scene1Min	Scene1Max	Scene1Median	 Scene5Mean
18	18	18	18	47.6

Predictive pattern learning

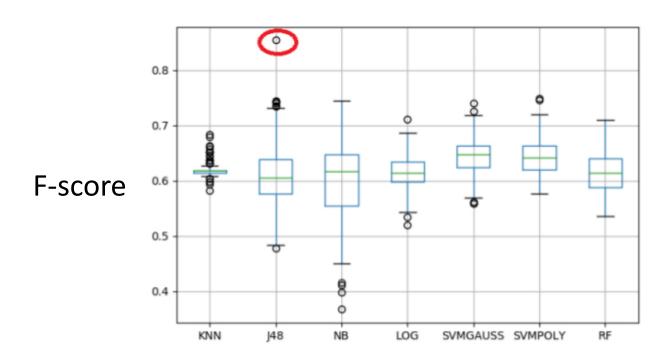
- Any supervised classification algorithm can be selected, in order to learn a pattern to predict the training outcome based on the features constructed in the data engineering process
- The Principal Component Analysis is performed to deal with the curse of dimensionality

Empirical validation – data

- Virtual training platform developed by MTM Project S.R.L with the content provided by MTM PROJECT S.R.L and Cinemagica S.R.L.
- 97 maintenance technicians have performed a virtual training session with 5 scenes

Empirical validation – data

- A training team has manually evaluated the learning achievements of workers after the virtual training test with a multi-choice test
 - √ 71 technicians → passed
 - √ 26 technicians → rejected



Empirical validation – methodology

- Leave-one-out validation
- Classification algorithm
 - ✓ KNN, J48, Naive Bayes NB, Logistic Regression Log, SVM (Gaussian kernel GAUSS, polynomial kernel POLY), Random Forest RF
- Accuracy performance evaluation
 - √ F-score

Empirical validation – results by classification algorithm

Empirical validation – results by data engineering schema

configuration F-score 0.6186 scene 0.7181 transition 0.6337 performance 0.5830 scene, transition scene, performance 0.6701 0.7075 transition, performance 0.8537 scene, transition, performance

J48

Final remarks

Kometa + ViTE	Accuracy	F-score
	0.8556	0.8537

 The accuracy of ViTE is in step with accuracy values in the recent literature for task of outcome prediction in education ranging between 0.7 and 0.81

Future work

- Extending the validation by considering data collected through new training sessions
- Framing the approach in a streaming environment, in order to learn a predictive pattern that may change over time as new training sessions are completed
- Exploring the use of transfer learning to transfer the predictive pattern learned with a training session to a session having a new topic

Thank you for your attention

annalisa.appice@uniba.it

Knowledge Community for Efficient Training through Virtual Technologies

This work fulfils the research objectives of the POR Puglia FESR-FSE 2014-2020 - Asse prioritario 1 - Ricerca, sviluppo tecnologico, Innovazione - Sub Azione 1.4.b bando Innolabs - Research project KOMETA (Knowledge Community for Efficient Training through Virtual Technologies) funded by Regione Puglia

